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Overview 
•  Ensemble-based assimilation schemes 

–  Utilize flow-dependent forecast uncertainties. 
–  Provide superior estimates than operational schemes 

because they account for “errors of the day.”  
•  Correcting forward model errors 

–  Bias correction of radiances in assimilation schemes 
–  Ensemble schemes can correct for these biases  

•  Assimilating satellite observations 
–  Radiance observations improve forecasts in 

temperature and winds 
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Forecast ~106 - 108 d.o.f. 
Observations ~105 - 107 d.o.f. 
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Structure of Forecast Errors 
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Ensemble Kalman Filter Schemes 
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Local Ensemble Transform  
Kalman Filter (LETKF) 

LETKF finds the best linear combination of the
ensemble members fitting observations at the analysis time.  

time 

analysis at
time t-1 

analysis at
time t 



Forecast Uncertainty 

Operational Schemes: 

•  Constant forecast 
error covariance 
matrix. 

•  Subject to “errors of 
the day”. 

Ensemble Schemes: 

•  Propagate the 
forecast error 
covariance with an 
ensemble. 
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Perform data assimilation in local patch (3D-window) 

The state estimate is updated at the 
central grid red dot 

All observations (purple diamonds) 
within the local region are assimilated 

Localization 
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•  LETKF is model independent and relatively simple to 
implement. 

•  Can parallelize the LETKF scheme. 
•  Gain further efficiency because matrix computations are 

performed in the space spanned by the ensemble. 
•  LETKF takes only 5 minutes on a 20 node PC cluster, 

which is comparable to the computational cost of 
operational schemes.   

•  LETKF should provide a more accurate analysis than 
operational schemes because it utilizes an evolving 
forecast error covariance. 

•  LETKF can adjust for “errors of the day.” 

Features of LETKF 



Comparing LETKF to NCEP’s 3D-VAR 
•  Use NCEP’s 3D-VAR (SSI) and LETKF as the data assimilation scheme for 

T62 NCEP GFS.  

•  Assimilate all conventional observations for Jan-Feb, 2004. 

•  Analyses and forecasts are verified against operational T254 analysis. 



Comparing LETKF to NCEP’s 3D-VAR 
•  Use NCEP’s 3D-VAR (SSI) and LETKF as the data assimilation scheme for 

T62 NCEP GFS.  

•  Assimilate all conventional observations for Jan-Feb, 2004. 

•  Analyses and forecasts are verified against operational T254 analysis. 

In NH, the results 
are comparable  

 In SH, the LETKF results  
are much better than SSI 

Szunyogh, Kostelich, et al. (2007) Tellus A 

RMS error (K) RMS error (K) 

NH SH 

P
re

ss
ur

e 
(h

P
a)

 

P
re

ss
ur

e 
(h

P
a)

 

48 hour temperature 

SSI 

LETKF 



Overview 
•  Ensemble-based assimilation schemes 

–  Utilize flow-dependent forecast uncertainties. 
–  Provide superior estimates than operational schemes 

because they account for “errors of the day.”  
•  Correcting forward model errors 

–  Bias correction of radiances in assimilation schemes 
–  Ensemble schemes can correct for these biases  

•  Assimilating satellite observations 
–  Radiance observations improve forecasts in 

temperature and winds 



Form of Satellite Observations 

•  Model for unbiased satellite observations is  
    y = h(xtrue) + η,  

–  h takes model state variables into observation space 
–  xtrue is the true model state  
–  η is unbiased random noise 

•  Biased satellite observation are assumed to be of the 
form 

–  β is a vector of bias parameters to be determined.

� 

y = ˜ h x true,β( ) + η



Estimating Bias Parameters 
•  Biased satellite observation are assumed to be of the form 

•  β can be estimated online, during the data assimilation procedure 
(Derber and Wu, 1998; Dee and DaSilva, 1998; Baek et al., 2006) 

•  Ensemble-based schemes can incorporate a variety of bias 
correction techniques for radiances, including 
–  Variational bias estimate and ensemble analysis (Miyoshi et al., 2010) 
–  State space augmentation (Fertig et al., 2009) 



LETKF 

time 

LEKF finds the best linear combination of the model state
ensemble members fitting the observations at the analysis time  
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LETKF with state space augmentation 
bias correction 
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LETKF with state space augmentation 
bias correction 

Finds the best linear combination of the ensemble of 
model states and bias parameters fitting the observations. 

time 

analysis at 

time t-1 

analysis at 

time t 

Analysis  [Analysis; Bias] 



Perfect model scenario: 
A “true” trajectory is generated by integrating the SPEEDY (low 
resolution, simplified GCM) model for two simulated months (Jan 
and Feb, 1982). 

Observations:
•  Rawinsonde observations (U, V, T, Ps)
•  Satellite observations

–  Use pCRTM to simulate 15 AIRS channels. 
–  Created at every model grid point.
–  Bias simulated by assuming there is a fractional error in the 

satellite absorption coefficient (Watts and McNally, 2004).
•  Satellite forward model uses raw pCRTM without the Watts and 

McNally term.

Perfect model experiments 



Typical Simulated Satellite Bias 
Time averaged satellite observation bias  

The simulated bias has a similar structure to the true bias.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K 



Temperature Analysis RMS Error  
(global and Feb. average) 

The bias correction 
improves the analysis.

RMS Error (K) 
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• Conventional
• Biased satellite and conventional
• Unbiased satellite and conventional
• Constant correction
• Constant and 850 to 300hPa thickness
• Constant and surface skin temperature
• All three predictors.
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Assimilating radiances in NCEP GFS 
•  Use LETKF as the data assimilation 

scheme for T62 NCEP GFS.  

•  Assimilate all conventional 
observations and AMSU radiances 
for Jan-Feb, 2004. 

•  Bias correction terms are (1) 
constant, (2) scan angle, (3) skin 
temperature 

•  Analyses and forecasts are verified 
against operational T254 analysis. 

Conventional Observations 
Radiances without bias correction 
Radiances with bias correction 

Bias correction enables positive 
impacts from AMSU observations. 
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•  Use LETKF as the data assimilation 

scheme for T62 NCEP GFS.  
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for Jan-Feb, 2004. 

•  Bias correction terms are (1) 
constant, (2) scan angle, (3) skin 
temperature 

•  Analyses and forecasts are verified 
against operational T254 analysis. 

Conventional Observations 
Radiances without bias correction 
Radiances with bias correction 

Cross-correlations enable positive 
impacts in wind field from AMSU. 



Conclusions 

•  Ensemble schemes efficiently incorporate flow-
dependent forecast uncertainties in a model 
independent way. 

•  LETKF improves the analysis obtained from 3D-VAR. 
•  LETKF can estimate radiance biases through forward 

model errors online efficiently. 
•  Bias correction improves analyses and forecasts in 

simulations with “perfect model” and real radiances. 
•  LETKF successfully uses cross-correlations between 

dynamic variables to improve forecasts of 
unmeasured variables. 



Biased AIRS observations 

•  Typical radiative transfer model: 

•  Assume the error in the satellite observations is in the 
absorption coefficient: 

•  Watts and McNally (2004) find γ = 1.05 for AIRS. 

� 

h(x) = B(T (p))dτ∫

� 

τ = exp − κ(p)ρ(p)dp∫( )

� 

κ →γκ

� 

τ →τ γ


